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Functions of the singular values of matrices of third order cumulants associated with the
TOR, CTOM and OARM algorithms for parametric bispectral estimation are shown to
identify cutting states associated with the orthogonal cutting of stiff cylinders. Test functions
and experimentally measured cutting tool accelerations are examined. Algorithms for
auto-regressive approximations utilizing cumulants of arbitrary order are shown to
characterize cubically phase-coupled test functions.
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1. INTRODUCTION

A review of cutting vibration research is presented in reference [1]. Previous cutting models
and methods of chatter detection are given in references [2-13].

Recently developed signal processing methodologies including wavelets, neural networks
and information-theoretic functionals have been applied to the analysis and control of
cutting dynamics. Wavelet transforms were employed in reference [14] to study
non-regenerative thread and slot cutting processes. Time-frequency plots based on
Gaussian wavelet transforms were used to detect and characterize non-stationary
phenomena such as built up edge breakage. Wavelet analysis indicates that the
non-regenerative cutting process is probably quadratically non-linear [15]. Cutting states,
associated with the orthogonal cutting of stiff metal cylinders, were identified in reference
[16] through an analysis of the ratios of the mean absolute deviations of details of the
biorthogonal 6,8 wavelet decompositions of cutting force measurements. The kurtosis of
detail d; was shown to identify transitions to chatter.

In reference [17], two back propagation neural networks, one for frequency estimation,
the other for sine wave identification, were trained on numerically generated sine and
triangular waves. Chatter vibrations were assumed to have a harmonic shape, exponential
growth of amplitude and a frequency similar to the lowest natural frequency of the
structure. The trained neural network was able to detect the onset of chatter for the turning
of long slender bars.

Discrimination between chatter and non-chatter cutting states was achieved in reference
[18] through an analysis utilizing the coarse-grained entropy rate. A significant decrease of
the entropy rate was shown to indicate the onset of chatter.

The identification of cutting states, associated with the orthogonal cutting of stiff steel
cylinders, was realized in reference [19] through an analysis of the behavior of the singular
values of a Toeplitz matrix, R, of third order cumulants of tool acceleration measurements.
The R matrix determined the coefficients in an auto-regressive (AR) approximation of the
bispectrum based on the third order recursion method (TOR) [20]. A bispectral and
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bicoherency analysis of the cutting tool acceleration measurements showed that the cutting
process is quadratically phase coupled [15]. Reference [19] shows the ratio of the sum of
the largest pair of singular values of R to the sum of the second largest pair, the R-ratio,
differentiated between light cutting, medium cutting, pre-chatter and chatter states.

A study of parametric methods for the detection of phase coupling through
approximation of the bicoherency and bispectrum was given in references [21, 22] in
which the performances of the TOR, CTOM constrained third order mean [21] and
OARM, optimized AR method [23] algorithms were compared. For the examples
presented, it was found that CTOM was superior to TOR in the resolution of peaks in the
bispectrum, while for reduced data sets OARM was superior to TOR. TOR, CTOM and
OARM were shown to resolve peaks in the bispectrum more accurately than the
conventional method.

In the following, the coefficient matrix for the P unknown coefficients in the AR
approximation of the given time series is denoted by R, equation (14), Q, equation (25), r5,
equation (30) for the TOR, CTOM and OARM algorithms respectively. Q- and r,-ratios
associated with Q and r, are defined identically to the R-ratio associated with the R matrix.
Three quadratically phase-coupled trigonometric functions fi(t), equations (32)-(34),
constructed in reference [ 19] approximate R, Q and r,-ratios associated with measured tool
acceleration for chatter, light and medium orthogonal cutting. Although, for a given fi(z),
singular values of R, Q and r, matrices differ by orders of magnitude, the associated R,
0 and r,-ratios are nearly identical when evaluated over an extended data set of 15 records
of 1024 samples each. The R, Q and r,-ratios approach 2 for f;(t), the chatter state. The
R and Q-ratios are nearly identical for all three f;(t). The r,-ratio as a function of matrix size
or maxlag is similar in behavior to the R and Q-ratios. It is shown that the ratios evaluated
for an appropriate matrix size or value of maxlag characterize the f;(¢). The ratios, evaluated
over reduced data sets, remain capable of characterizing the functions f;(t). The R, Q
and r,-ratios are found for the extended data set to which the colored Gaussian noise of
variance = 1-0 had been added. The effect of the noise on the ratios is shown to be slight.
The ratios characterized the functions f;(t) for the reduced data set with added colored
Gaussian noise of variance = 0-5. The R, Q and r,-ratios were found for an experimentally
measured set of cutting tool accelerations associated with the chatter state. The ratios are in
good agreement for maxlag > 50. Although TOR, CTOM and OARM all characterize the
functions f;(t) and the chatter data, the robustness and computational efficiency of TOR
recommends it.

The elements of matrices R, Q and r, are functions of third order cumulants. Singular
values of the C and S matrices associated with AR approximations by cumulants of
arbitrary order are studied as a function of matrix size or maxlag. It is shown that the
associated C and S ratios characterize cubically phase-coupled test functions. The R, Q, and
r,-ratios have a potential application in the control of orthogonal cutting in which
quadratic phase coupling is present. The C and S ratios may be useful in the control of
cutting systems in which cubic or higher order phase coupling is present.

2. THIRD ORDER RECURSION

The following definitions and theorems [22, 24] provide a background in higher order
spectral theory for a subsequent application. Let m, (tq,72,..., T,—1) = the nth order
moment of a real nth order stationary random process X (k), k =0, + 1, + 2,.... Then,

My(T1s T2 ooy Tuot) = E[X(R) X (k 4 74) - X (k + 7, 1)]. (1
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E is the expected value, which may be estimated by
+m
mn(fls Toyenns Tn*l) = (1/2m + 1) Z X(k)X(k + Tl) X(k + Tn*l)a (2)
k=-m

where m — + co. For a set of random variables {x;, x,,...,x,} the joint cumulants
Cum[xy, X5, ..., X, ] of order n are given by

Cum[xy, Xz, ..., X,] =Y (=) "1(P —1)!E{n xi}E{n x,} E{n xi}, (3)

where summations extend over all partitions (sy,S,,...,5,) p=1,2,...,n of the set of
integers (1, 2, ..., n). Let

G (T1sTaseees Tymq) = Cum[ X (k), X (k + 11), ..., X (k + 7,-1)]. (4)
Then equations (1), (3) and (4) imply that
i =mi,  c(t)=mi(t) — (m)> (5,6)
§(t1, 12) = M3 (1, T5) — mi[m3(cy) + m3(12) + mi(t; — )] + 2(mi)°. ()

These expressions take a simpler form if m7 = 0. In the subsequent computations the mean,
m7 is always subtracted from the time series. Then,

cﬁ(‘cla T2, ‘CS) = milc-(fla T2, ‘53) - mJZC(TI)m)ZC(‘ny - TZ)
®)
—m3(ta)m3(t3 — 14) — m3(t3)m3 (T2 — 79).
In general, the cumulant c¢;(tq,7,,...,7,-1), equation (4), is symmetric for any

permutation of its arguments [24]. Third order cumulants satisfy further symmetries [21],
including

c3(ty, T2) = 3(— 11, T2 — T9) )

and

c3(t1,T2) = G3(11 — T2, — T2) (10)
The (n — 1)th order spectrum of X (k), C,(ty, 72, ..., T,—1), is defined by

+

+ o0 + o
Cn(w17w27"'7wn—l): Z Z Z Cn(Tls’EZa"'srn—l)
Ty—1=—

7 (1)
xexp[—j(wiTy + w7 + - 4+ 0y 1Tu—1)]-

Consider an AR estimation of the bispectrum, Cs(wq, w,), equation (11) [21, 25]. A Pth
order AR process is described by

X(n) +

i

a(i)X (n — i) = W(n), (12)

M~

1
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where it is assumed that W (k) is non-Gaussian, E(W (k)) = 0, E(W?3(k)) = f. Multiplying
through equation (12) by X(n — k)X (n — /), summing and noting equation (2) gives

X (— k—/)+z e — ki — £) = Po(k, ), (13)

i=1

the third order recursion equation, where k >0, / > 0. 6(0,0) = 1 and J(k, /) = 0 for all
other positive values of k and /. Three algorithms TOR, CTOM and OARM, have been
proposed for the determination of the AR coefficients a(i) [20, 21, 23]. The singular values
of matrices associated with these algorithms provide a basis for the identification of the
cutting state.

3. TOR

The TOR algorithm, for the determination of the AR coefficient a(i), follows from the
third order recursion equation (13), letting k =/, k =0, ..., P. This yields P + 1 equations
for the P +1 unknowns a(i) and f; P +1 = maxlag. In matrlx notation,

Ra = b, (14)
where
(0,0) g(1,1) g(P, P)
R— g(—li, —1) £(0,0) g(P—l',P—l) ’ (15)
g(—P',—P) g(—P+1,—P+1) - g(d,O)

and where g(i,j) = ¢3(i,j), a =[1,a(1),...,a(P)]T and b= [$,0,...,0]". R is, in general,
a non-symmetric Toeplitz matrix. Sufficient conditions for the representation in equation
(14) to exist are given in reference [22]. The bispectrum corresponding to equation (13) is
given by references [20, 22]

Ci(wy1, w3) = fH(w)H(w,) H* (01 + w,), (16)
where
H(w) = 1/<1 + i a(i) cxp(—jwn)) (17)

and H*(w) = complex conjugate of H(w). An estimate of the R matrix, equation (15), for
a data set X(i),i =1,..., N, may be formed [20] as follows:

(1) Segment the data set into x records of M samples each. Xi(k), k =1,2,..., M, are
data points associated with the ith record.
(2) Compute c3 ;(m, n) for the ith record as

b
c3.:(m, n) = (1/M) Z X)X +m XD + n). (18)

wherei=1,2,...,x,a=max(1,1 —m,1 —n) and b = min(M, M — m, M — n).
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(3) Average c3 ;(m, n) over all x records,

i=

Ea(m,m) = (UK) S ¢3.4m, n) (19)

to yield the estimate ¢3(m, n), from an estimated R matrix by replacing c¢3(m, n) by
¢3(m, n) in equation (15). Values of M and K, equation (18), which reduce the total
duration of the required data set and algorithmic execution time were estimated by
a direct parametric search; Figures 4 and 5. Functions of the singular values of
equation (15) are subsequently used in cutting state identification.

4. CTOM

The constrained third order mean (CTOM) [21], provides an alternative set of linear
algebraic equations for the determination of AR coefficients, a;. Define

dm(k, 1) = X (m — ) X2(m — k), (20)
where i = 1,..., P. It follows from equations (1), (2), and (7) that
E{Guk, D)} =30 — k, i — k). (21)
Equation (13) may then be expressed in terms of §,,(k, i) as
E{C(m, k)} =0 (22)

with

C(m, k) = Gu(k, 0) + Z a(i)gm(k, i). (23)

i=

N — P samples of C(m,k) may be found for m=P+1,P+2,...,N; k=1,...,P.
Equation (22) is satisfied by equating the sample mean to zero:

1

N
C(m, k) =0 (24)
N-—-P mZXP:Jrl
for k =1,..., P. Expressing equation (24) in matrix form gives
Qa=h, (25)

where Q = [di], ij = 1,.... P, a = [a(1), .., a(P)]", b = [dso]" and

N
Gij= Y. quij). (26)
m=P+1
If the time series is divided into x records of equal length, then §;; may be approximated by
the value of §,,(i, j) for the nth record, §%(i, j) averaged over x records. Then, equation (26)
becomes

K

XX @) (27)

n=1m=P+1

A

qdij =

A=
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CTOM is asymptotically equivalent to TOR for a given AR order [21] and gives consistent
AR parameter estimates for processes satisfying equation (12).

5. OARM

The optimized AR method [23] follows from equation (13) with k=0,1,...,s and
/=0,1,...,s. Equation (13) becomes

ra=>h, (28)
where
(0,00 (=1, -1 - (—s, —5)
(0,1) (—1,0) o (=8, —s+1)
r= (O;s) (— 1,3 —1) (— 5,0) , (29)
(1,) (0, —1) o (—=s+1, =)
_(s;s) (s—l;s—l) (0;0)

a=a[l,al),...,a(P)]%, b=[B,0,....01%, (i,j) = ¢i(i,j) and r is (P + 1)2x (P + 1) with
s = P. A least-squares solution of equation (29) is a = (r'r)” 'r"b which implies that

r,a=r'h, (30)

where r, =r'r. TOR is a special case of OARM form with k = /. The elements of the
r matrix, c3(i, j), may be estimated by averaging over k records of M samples each; equation
(19).

6. SINGULAR-VALUE DECOMPOSITION

Properties of singular values are discussed and applied to phase-coupled test functions,
chosen to model chatter, light and medium orthogonal cutting. If A is a real m x n matrix,
then there exists orthogonal matrices U e R™*" and V € R™*" such that

U"AV = diag(cy, ..., 0,) € R™*", (31)

where ¢ = min(m, n), 6; = 6, = --- g, = 0 are the singular values and R"™*" denotes a real
mxnmatrix.If 6, = -+ 20, 20,41 = -+ = 6, = 0, then rank (4) = r; references [26, 27].
The following three quadratically phase-coupled trigonometric functions:

f1(t) = cos(2m 100t + 6,) + cos(2m100t + 6,)
(32)
+ 0-2 cos(2m 200t + 04 + 0,),

f>(t) =09 cos(2n90t + 0,) + 1-:0cos(2x 100z + 6,)
(33)
+ 0-2cos(2m 190t + 04 + 0,),
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f3(t) = cos(2n 90t + 0,) + cos(2x 100zt + 6,)

+ cos(2n 190t + 0, + 0,) + cos(2m 100t + 05) (34)
+ cos(2n 110t + 0,) + 0-5cos(2n 210t + 05 + 04)

were constructed to approximate the R, Q and r,-ratios associated with measured tool
accelerations for chatter, light and medium orthogonal cutting, respectively; reference [19].
The phases 6; are mutually independent and uniformly distributed over [0, 27].

7. STATE CHARACTERIZATION

The singular values of an mxn matrix may be ordered as o, >0, > 03>
042 - =0, =0, equation (31). Denote the ratio (6; + 0,)/(03 + 04) for a matrix A as the
A-ratio. The R, Q and r,-ratios associated with the R, Q and r, matrices, equations (15), (25),
(27) and (30), respectively, have been found for each of the test functions, f;, equations
(32)-(34) besides a set of measured tool accelerations associated with chatter. The R, Q
and r,-ratios are shown to discriminate between the test functions and to be consistent
for the chatter data. Although the magnitudes of the singular values of the R, Q and r,
matrices vary widely, the corresponding R, Q and r,-ratios are for the most part nearly
identical.

Three data sets were constructed consisting of test functions f;(t), i = 1,2, 3 sampled at
1024 Hz and arranged in 15 records of 1024 values each. The singular values of the R, Q and
r, matrices and the R, Q and r,-ratios were found by averaging the appropriate function,
equations (19), (27), (30), over thel5 records associated with each f;(t).

The function f; (t) is self-phase coupled at a frequency of 100 Hz. In the experimental data
studied, cutting states closer to chatter always exhibited power spectral components in the
neighborhood of 100 and 200 Hz and a single peak in the bispectrum in the neighborhood
of (100 Hz, 100 Hz), [19]. For f;(t), the means of the dominant pairs of singular values of
R are seen to be linear functions of maxlag in Figure 1(a). The corresponding R-ratio
converges to a value of 2 for maxlag > 60, Figure 1(b). Similar behavior is exhibited by the
singular values of Q. Although the magnitudes of the singular values of Q differ from those
of R by a factor of 10® the Q-ratio oscillates with a small amplitude about a value of 2,
Figure 2(a) and 2(b). For f(t), the singular values of r, versus maxlag differ from those of
R and Q, Figure 3(a). However, the Q-ratio converges to a value of 2 for maxlag > 80,
Figure 3(b). It is evident that the number of pairs of singular values equals the number of
different frequency components in f;(¢).

Function f, (t), equation (33), exhibits phase coupling of 90 and 100 Hz components. The
coupling of side bands to the central 100 Hz frequency component has been observed in the
experimental data associated with light and medium cutting. The R-ratios for f,(t) and light
cutting data are similar [ 19]. Singular values of R and Q matrices and the R and Q-ratios as
functions of maxlag, Figures 1(c) and 2(c), 1(d) and 2(d) are identical. For maxlag = 100 the
R and Q-ratios, equal 1 and are bounded between 1 and 1-2 for maxlag > 100. The r,-ratio
is similar to the R and Q-ratios, reaching a minimum of 1-2 for maxlag = 100 and is
bounded between 1-2 and 1-25 for maxlag > 100, Figure 3(c) and 3(d). The number of pairs
of singular values, 3, is seen to equal the number of different frequency components in f, (t).

Functions f3(t), equation (34), is the sum of a phase-coupled component at 100 and
110 Hz and a phase coupling of 90 and 100 Hz components. The R-ratios for f3(t)
and medium cutting data are similar [19]. Singular values of R and Q matrices and R and
Q-ratios, Figures 1(e) and 2(e), 1(f) and 2(f) are nearly identical. For the R and Q-ratios,
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Figure 1. f;(t) with n samp = 1024, f samp = 1024 Hz, n record = 15. For i = 1: (a) singular values and (b)
R-ratio versus maxlag; for i = 2: (c) singular values and (d) R-ratio versus maxlag; for i = 3: () singular values and

(f) R-ratio versus maxlag.

respectively, at maxlag = 100, minimums of 1-46 and 1-52 are attained and 146 < R < 1-62,
1-52 < Q < 1-:63 for maxlag > 100. The r,-ratio is similar to the R and Q-ratios reaching
a minimum of 128 at maxlag = 100 and is bounded between 128 and 1-50 for
maxlag > 100, Figure 3(e) and 3(f). Five pairs of singular values are evident which
correspond to the five frequency components present in f5(¢).
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Q-ratio versus maxlag; for i = 2: (c) singular values and (d) Q-ratio versus maxlag; for i = 3: () singular values and
(f) Q-ratio versus maxlag.

Rapid identification of the current cutting state is essential for the on-line control of the
cutting process. To this end, parametric studies were carried out in which sampling rates,
record size and number were varied. Three data sets were formed consisting of f;(t),
i=1,2,3 sampled at 1024 Hz and arranged in three records of 256 samples each for a time
series 0-75 s in length. The singular values of the R, Q and r, matrices and the R, Q and
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Figure 3. f;(t) with n samp = 1024, f samp = 1024 Hz, n record = 15. For i = 1: (a) singular values and (b)
r,-ratio versus maxlag; for i = 2: (c) singular values and (d) r,-ratio versus maxlag; for i = 3: (e) singular values and
(f) r,-ratio versus maxlag.

ry-ratios were computed by averaging the appropriate functions over the three records
associated with each f;(¢). Figures 4 and 5 show the results of the computation. Comparison
of Figure 4(a) and 4(b) for f; (t) with Figure 1(a) and 1(b), singular values of R matrices and
the R-ratios for 15 records of 1024 samples each sampled at 1024 Hz, shows the figures to
be identical. Figure 4(c) and 4(d), for f(¢), is nearly identical to Figure 1(c) and 1(d). The
minimum of the R-ratio for f3(t), Figure 4(f), at maxlag = 100 is 1-56, while for the more
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Figure 4. f;(t) with n samp = 256, f'samp = 1024 Hz, n record = 3. For i = 1: (a) singular values and (b) R-ratio
versus maxlag; for i = 2: (c) singular values and (d) R-ratio versus maxlag; for i = 3: (e) singular values and
(f) R-ratio versus maxlag.

accurate result shown in Figure 1(f) the minimum is 1-46. Figure 5 displays the singular
values of Q matrices and the Q-ratios for f;, i = 1, 2, 3 based on the reduced data set of three
records each of 256 samples. A comparison with Figure 3 shows the superposition of
oscillations on the more accurate result. However, the approximation is sufficiently
accurate to characterize the functions f;.
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For k > 3 the cumulants ¢, (tq, 72, ..., Tx—1), €quations (2), and (7), are known to be
insensitive to added Gaussian noise for sufficiently large values of m in equation (2) [22, 24].
The magnitude of error, for a given f;(¢), in the numerical computation of singular values of
the R, Q, and r, matrices occasioned by additive Gaussian noise is shown to be a function of
the magnitude of the noise variance and m. Gaussian noise with a variance = 1 was added
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Figure 6. f;(t) + Gaussian noise of variance = 1 with n samp = 1024, f samp = 1024 Hz, n record = 15. For
i = 1: (a) singular values and (b) R-ratio versus maxlag; for i = 2: (c) singular values and (d) R-ratio versus maxlag;
for i = 3: (e) singular values and (f) R-ratio versus maxlag.

to the f;(t) functions. Three data sets were formed for f;(t), i = 1, 2, 3 sampled at 1024 Hz and
arranged in 15 records of 1024 samples each. The corresponding singular values of the
R matrix, equation (15) and the R-ratios are shown in Figure 6. Figure 6(a) and 6(b) for f; (¢)
plus noise is identical to Figure 1(a) and 1(b) for the noiseless case. The qualitative behavior
of the R-ratio for f,(t) plus noise, Figure 6(d), is similar to the noiseless case, Figure 1(d),
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i = 1: (a) singular values and (b) Q-ratio versus maxlag; for i = 2: (c) singular values and (d) Q-ratio versus maxlag;
for i = 3: (e) singular values and (f) Q-ratio versus maxlag.

decreasing to a minimum of 1 for maxlag = 100. Figure 6(e) and 6(f) for f5(¢) plus noise is
nearly identical to Figure 1(e) and 1(f) for the noiseless case.

As in the case of the R-ratio, the Q-ratio, equation (25), associated with CTOM, gives
ratios for f;(t) plus noise, Figure 7, which are qualitatively similar to those found for the
noiseless case, Figure 2. Similar calculations of the R and Q-ratios based on the reduced
data set with added Gaussian noise of variance = 0-50 displayed qualitative similarities
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between the noiseless and noisy cases. For both the extended and reduced noisy data sets,
the R and Q-ratios identified the test functions, f;(t).

The TOR, CTOM and OARM algorithms were applied to the analysis of experimentally
measured tool acceleration chatter data, set 1, for which depth of cut = 2-8 mm, feed rate =
0-007 in/rev, surface speed = 90 m/min, sampling rate = 1024 Hz and duration = 1:0 s. The
corresponding R, Q and r,-ratios, shown in Figure 8, are in good agreement for
maxlag > 50. Previous studies of the measured tool acceleration chatter data [19] have
shown that an R-ratio > 2 is associated with the chatter state.
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8. AR APPROXIMATION BY CUMULANTS OF ARBITRARY ORDER

The previous discussion has been limited to Toeplitz matrices of third order cumulants,
¢3(ty, T2), associated with AR approximation. For systems with cubic or higher order
non-linearities, algorithms based on third order cumulants would fail. Two algorithms for
the determination of ARMA parameters [28-30] provide matrices of cumulants of
arbitrary order suitable for singular-value analysis. Consider the causal ARMA model

M~

)yt =)= Y. bt ) 69)

(0]

J

where y(i) is the output and the input w(i) is stationary, zero mean, i.i.d., non-Gaussian with
kth order cumulant y;’. Since w(i) is i.i.d. its kth order cumulant may be expressed as

ity dnseensig—1) = P 0(ir, 02y onny 1) (36)

where 0(iy,i,...,0—1) denotes the Kronecker delta function. The kth order output
cumulants are then given by [28, 29]

+

Cilin, g,y ik—1) = 7% Z h(@)h(i + 1) ... h(i + i, 1), (37)

i=0
where h(m) = ARMA response function. Let
ci(m, n) = ci(m,n,0,...,0) (38)
for k = 3. Substituting equation (38) into equation (37) gives
A m =S b)) hii + m)h(i + n). (39)
i=0
It can be shown [28] that
p
h(i +m) = — .;a(j)h(i +m —j)+ b(i + m). (40)

Combining equations (39) and (40) gives

a(j)ei(m —j,n) = (st (41)

M=

cr(m, n) +
J

1

where Q = 'Y "7 h(l) b(i + m)h(i + n). Lettingn=q —p,...,q, m=q+1,...,q+pin
equation (41) glves p(p + 1) equations for the coefficients a(i), i = 1,..., p [28]:

Ca=h, (42)
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where
[(g+1—pg—p - (4.9 —p)
(q+1—p,q) (4, 9)
C= : , (43)
(4.9 —p) - (q@+p—1,9—p)
(4, 9) o (g+p—1,9)

a= [a(p)9 a(p - 1)9-“: a(l)]T andb = — [(q + laq _p):a(q + 19 q)a)(q + 2% _p)a'--a
(q + p, @)1". c}(m, n) = (m, n). Taking the product of the p(p + 1) x p matrix C with CT gives

C,,a = C"b, (44)

where C,, = C'C is p x p. Assumptions inherent in the deviation of equation (42) are given
in references [28, 30]. The singular values of Cy, will be examined subsequently.
A second algorithm for ARMA parameter estimation [30] follows the derivation of
reference [28], equations (35)-(41). In reference [30], equation (41) is written in the form
P
Y. a(j)ei(m —j,n) =0 (45)

j=0

for m >q, where n=¢q—p,...,q and m=q+1,....,9+p+ M, M > 0. Expressing
equation (45) as S a =0, S, is defined as

S,, = S'S. (46)

For a proper choice of p, g and M, the AR parameters, a(j), are identified by equation (45),
[30]. In practice, the true ARMA orders, p and g are not usually known. Assuming that
these parameters are overestimated by P> p and Q > ¢, letting n=—P,...,Q and
m=Q+1,...,0 + P will include a sufficient amount of data in providing a robust
estimate of the singular values of the S matrix. The elements of the C and S matrices may be
estimated by averaging over x records of M samples each; equation (19).

9. CUBIC PHASE COUPLING

Relationships between cubically phase-coupled trigonometric functions and the singular
values of the C,, and S, matrices were considered through a study of functions g;(t), i = 1, 2:

g1(t) = 0-25cos(2n 100t + 0,) + 0-25 cos(2x 100t + 0,)
+ 1-:0cos(2m 130t + 03) + 0-86 cos(2m 330t + 0, + 0, + 03), 47
g5(t) = 1-0cos(2n 100t + 0,) + 1-0 cos(2n 110t + 0,)

+ 1-:0cos(2m 160t + 03) + 0-15 cos(2n 370t + 0, + 6, + 03), (48)
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Figure 9. g;(t) with n samp = 512, f'samp = 512, n record = 15. For i = 1: (a) singular values and (b) C-ratio
versus maxlag; for i = 2: (c) singular values and (d) C-ratio versus maxlag.

where the phases 6; are mutually independent and uniformly distributed over [0, 27]. Two
data sets were constructed consisting of cubically phase-coupled test functions g;(¢),i = 1, 2;
equations (47) and (48), sampled at 512 Hz and arranged in 15 records of 512 values each.
The singular values of the C and S,, matrices equations (43) and (46), and the C and Sj,
ratios were found by averaging the appropriate function over the 15 records associated with
each g;(t).

g1(t) is the sum of two components at 100 Hz together with components at 130 and
330 Hz. Three pairs of singular values of the C matrix are evident in Figure 9(a). The C-ratio
is seen to approach a value of ~ 3-2 in Figure 9(b) for maxlag = 100. The singular values
and C-ratio verses maxlag for g;(t) are qualitatively similar to those for the quadratically
phase-coupled function f; (t); equation (32), Figure 3(a, b).

The modulated function g,(t), equation (48), is the sum of four components at 100, 110,
160 and 370 Hz. Four pairs of singular values of the C matrix appear in Figure 9(c). The
C-ratio approaches a value of 1-0 at intervals of 50 maxlags. Three of the largest pairs of
singular values have a common value of maxlag = 50 which corresponds to approximately
10 Hz, the modulation frequency, with a sampling rate of 512 Hz. A similarity is
evident between Figures 9(c, d) and 3(c, d) for the quadratically coupled f5(t); equation (33).
An analysis of g;(t) based on the S;, matrix gave the results identical to those shown in
Figure 9.
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10. CONCLUSIONS

In references [21, 22], the algorithms CTOM and OARM were shown to resolve the
peaks in the bispectrum of a set of phase-coupled test functions more accurately than the
TOR algorithm. The present study demonstrates that for a set of phase-coupled test
functions modelling the orthogonal cutting of stiff metal cylinders [19] and an example of
experimentally measured cutting tool accelerations, ratios of singular values associated with
TOR, CTOM and OARM identify the test functions and cutting state. However, the
relative computational simplicity and speed of TOR together with its invariance in the
presence of high levels of Gaussian noise indicate greater effectiveness than CTOM and
OARM in the on-line control of cutting states.

The above algorithms detect quadratic or second order phase coupling but not third or
higher order coupling. In the present study, ratios of singular values associated with
matrices of fourth order cumulants were shown to identify test functions with cubic phase
coupling.
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