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AUTO-REGRESSIVE SVD ALGORITHMS AND CUTTING
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Functions of the singular values of matrices of third order cumulants associated with the
TOR, CTOM and OARM algorithms for parametric bispectral estimation are shown to
identify cutting states associated with the orthogonal cutting of sti! cylinders. Test functions
and experimentally measured cutting tool accelerations are examined. Algorithms for
auto-regressive approximations utilizing cumulants of arbitrary order are shown to
characterize cubically phase-coupled test functions.
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1. INTRODUCTION

A review of cutting vibration research is presented in reference [1]. Previous cutting models
and methods of chatter detection are given in references [2}13].

Recently developed signal processing methodologies including wavelets, neural networks
and information-theoretic functionals have been applied to the analysis and control of
cutting dynamics. Wavelet transforms were employed in reference [14] to study
non-regenerative thread and slot cutting processes. Time}frequency plots based on
Gaussian wavelet transforms were used to detect and characterize non-stationary
phenomena such as built up edge breakage. Wavelet analysis indicates that the
non-regenerative cutting process is probably quadratically non-linear [15]. Cutting states,
associated with the orthogonal cutting of sti! metal cylinders, were identi"ed in reference
[16] through an analysis of the ratios of the mean absolute deviations of details of the
biorthogonal 6,8 wavelet decompositions of cutting force measurements. The kurtosis of
detail d

3
was shown to identify transitions to chatter.

In reference [17], two back propagation neural networks, one for frequency estimation,
the other for sine wave identi"cation, were trained on numerically generated sine and
triangular waves. Chatter vibrations were assumed to have a harmonic shape, exponential
growth of amplitude and a frequency similar to the lowest natural frequency of the
structure. The trained neural network was able to detect the onset of chatter for the turning
of long slender bars.

Discrimination between chatter and non-chatter cutting states was achieved in reference
[18] through an analysis utilizing the coarse-grained entropy rate. A signi"cant decrease of
the entropy rate was shown to indicate the onset of chatter.

The identi"cation of cutting states, associated with the orthogonal cutting of sti! steel
cylinders, was realized in reference [19] through an analysis of the behavior of the singular
values of a Toeplitz matrix, R, of third order cumulants of tool acceleration measurements.
The R matrix determined the coe$cients in an auto-regressive (AR) approximation of the
bispectrum based on the third order recursion method (TOR) [20]. A bispectral and
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352 B. S. BERGER E¹ A¸.
bicoherency analysis of the cutting tool acceleration measurements showed that the cutting
process is quadratically phase coupled [15]. Reference [19] shows the ratio of the sum of
the largest pair of singular values of R to the sum of the second largest pair, the R-ratio,
di!erentiated between light cutting, medium cutting, pre-chatter and chatter states.

A study of parametric methods for the detection of phase coupling through
approximation of the bicoherency and bispectrum was given in references [21, 22] in
which the performances of the TOR, CTOM constrained third order mean [21] and
OARM, optimized AR method [23] algorithms were compared. For the examples
presented, it was found that CTOM was superior to TOR in the resolution of peaks in the
bispectrum, while for reduced data sets OARM was superior to TOR. TOR, CTOM and
OARM were shown to resolve peaks in the bispectrum more accurately than the
conventional method.

In the following, the coe$cient matrix for the P unknown coe$cients in the AR
approximation of the given time series is denoted by R, equation (14), Q, equation (25), r

2
,

equation (30) for the TOR, CTOM and OARM algorithms respectively. Q- and r
2
-ratios

associated with Q and r
2

are de"ned identically to the R-ratio associated with the R matrix.
Three quadratically phase-coupled trigonometric functions f

i
(t), equations (32)}(34),

constructed in reference [19] approximate R, Q and r
2
-ratios associated with measured tool

acceleration for chatter, light and medium orthogonal cutting. Although, for a given f
i
(t),

singular values of R, Q and r
2

matrices di!er by orders of magnitude, the associated R,
Q and r

2
-ratios are nearly identical when evaluated over an extended data set of 15 records

of 1024 samples each. The R, Q and r
2
-ratios approach 2 for f

1
(t), the chatter state. The

R and Q-ratios are nearly identical for all three f
i
(t). The r

2
-ratio as a function of matrix size

or maxlag is similar in behavior to the R and Q-ratios. It is shown that the ratios evaluated
for an appropriate matrix size or value of maxlag characterize the f

i
(t). The ratios, evaluated

over reduced data sets, remain capable of characterizing the functions f
i
(t). The R, Q

and r
2
-ratios are found for the extended data set to which the colored Gaussian noise of

variance"1)0 had been added. The e!ect of the noise on the ratios is shown to be slight.
The ratios characterized the functions f

i
(t) for the reduced data set with added colored

Gaussian noise of variance"0)5. The R, Q and r
2
-ratios were found for an experimentally

measured set of cutting tool accelerations associated with the chatter state. The ratios are in
good agreement for maxlag'50. Although TOR, CTOM and OARM all characterize the
functions f

i
(t) and the chatter data, the robustness and computational e$ciency of TOR

recommends it.
The elements of matrices R, Q and r

2
are functions of third order cumulants. Singular

values of the C and S matrices associated with AR approximations by cumulants of
arbitrary order are studied as a function of matrix size or maxlag. It is shown that the
associated C and S ratios characterize cubically phase-coupled test functions. The R, Q, and
r
2
-ratios have a potential application in the control of orthogonal cutting in which

quadratic phase coupling is present. The C and S ratios may be useful in the control of
cutting systems in which cubic or higher order phase coupling is present.

2. THIRD ORDER RECURSION

The following de"nitions and theorems [22, 24] provide a background in higher order
spectral theory for a subsequent application. Let m

n
(q

1
, q

2
,2, q

n~1
),the nth order

moment of a real nth order stationary random process X (k), k"0,$1,$2,2. Then,

m
n
(q

1
, q

2
,2, q

n~1
),E[X (k)X(k#q

1
)2X (k#q

n~1
)] . (1)
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E is the expected value, which may be estimated by

m
n
(q

1
, q

2
,2, q

n~1
)"(1/2m#1)

`m
+

k/~m

X(k)X (k#q
1
)2X(k#q

n~1
), (2)

where mP#R. For a set of random variables Mx
1
, x

2
,2, x

n
N the joint cumulants

Cum[x
1
, x

2
,2, x

n
] of order n are given by

Cum[x
1
, x

2
,2, x

n
]"+

p

(!1)P~1(P!1) !EG<
i|s1

x
iHEG<

i|s2

x
iH2EG<

i|sP

x
iH , (3)

where summations extend over all partitions (s
1
, s

2
,2, s

p
) p"1, 2,2, n of the set of

integers (1, 2,2, n). Let

cx
n
(q

1
, q

2
,2, q

n~1
),Cum[X(k), X (k#q

1
) ,2, X (k#q

n~1
)]. (4)

Then equations (1), (3) and (4) imply that

cx
1
"mx

1
, cx

2
(q

1
)"mx

2
(q

1
)!(mx

1
)2, (5, 6)

c(x)
3

(q
1
, q

2
)"mx

3
(q

1
, q

2
)!mx

1
[mx

2
(q

1
)#mx

2
(q

2
)#mx

2
(q

2
!q

1
)]#2(mx

1
)3. (7)

These expressions take a simpler form if mx
1
"0. In the subsequent computations the mean,

mx
1

is always subtracted from the time series. Then,

cx
4
(q

1
, q

2
, q

3
)"mx

4
(q

1
, q

2
, q

3
)!mx

2
(q

1
)mx

2
(q

3
!q

2
)

(8)
!mx

2
(q

2
)mx

2
(q

3
!q

1
)!mx

2
(q

3
)mx

2
(q

2
!q

1
).

In general, the cumulant cx
n
(q

1
, q

2
,2, q

n~1
), equation (4), is symmetric for any

permutation of its arguments [24]. Third order cumulants satisfy further symmetries [21],
including

cx
3
(q

1
, q

2
)"cx

3
(!q

1
, q

2
!q

1
) (9)

and

cx
3
(q

1
, q

2
)"cx

3
(q

1
!q

2
,!q

2
). (10)

The (n!1)th order spectrum of X (k), C
n
(q

1
, q

2
,2, q

n~1
), is de"ned by

C
n
(u

1
, u

2
,2, u

n~1
)"

`=
+

q1/~=

`=
+

q2/~=

2

`=
+

qn~1/~=

c
n
(q

1
, q

2
,2, q

n~1
)

(11)
]exp[!j(u

1
q
1
#u

2
q
2
#2#u

n~1
q
n~1

)].

Consider an AR estimation of the bispectrum, C
3
(u

1
, u

2
), equation (11) [21, 25]. A Pth

order AR process is described by

X (n)#
P
+
i/1

a (i)X (n!i)"=(n), (12)
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where it is assumed that =(k) is non-Gaussian, E(=(k))"0, E (=3(k))"b. Multiplying
through equation (12) by X(n!k)X (n!l), summing and noting equation (2) gives

cx
3
(!k,!l)#

P
+
i/1

a (i)cx
3
(i!k, i!l)"bd (k, l), (13)

the third order recursion equation, where k*0, l*0. d (0, 0)"1 and d (k, l)"0 for all
other positive values of k and l. Three algorithms TOR, CTOM and OARM, have been
proposed for the determination of the AR coe$cients a (i) [20, 21, 23]. The singular values
of matrices associated with these algorithms provide a basis for the identi"cation of the
cutting state.

3. TOR

The TOR algorithm, for the determination of the AR coe$cient a (i), follows from the
third order recursion equation (13), letting k"l, k"0,2, P. This yields P#1 equations
for the P#1 unknowns a (i) and b; P#1,maxlag. In matrix notation,

Ra"b, (14)

where

R"

g (0, 0) g(1, 1) 2 g(P, P)

g (!1,!1) g (0, 0) 2 g (P!1, P!1)

F F

g (!P,!P) g (!P#1,!P#1) 2 g (0, 0)

, (15)

and where g (i, j),cx
3
(i, j), a"[1, a(1),2, a (P)]T and b,[b, 0,2, 0]T. R is, in general,

a non-symmetric Toeplitz matrix. Su$cient conditions for the representation in equation
(14) to exist are given in reference [22]. The bispectrum corresponding to equation (13) is
given by references [20, 22]

Cx
3
(u

1
, u

2
)"bH(u

1
)H(u

2
)H*(u

1
#u

2
), (16)

where

H (u)"1NA1#
P
+
n/1

a(i) exp(!jun)B (17)

and H* (u),complex conjugate of H (u). An estimate of the R matrix, equation (15), for
a data set X(i), i"1,2, N, may be formed [20] as follows:

(1) Segment the data set into i records of M samples each. Xi (k), k"1, 2,2, M, are
data points associated with the ith record.

(2) Compute cx
3,i

(m, n) for the ith record as

cx
3,i

(m, n)"(1/M)
b
+
l/a

X(i)(l)X(i)(l#m)X(i)(l#n). (18)

where i"1, 2,2, i, a,max(1, 1!m, 1!n) and b,min(M, M!m, M!n).
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(3) Average cx
3,i

(m, n) over all i records,

cL
3
(m, n)"(1/K)

i
+
i/1

cx
3,i

(m, n) (19)

to yield the estimate cL
3
(m, n), from an estimated R matrix by replacing cx

3
(m, n) by

cL
3
(m, n) in equation (15). Values of M and K, equation (18), which reduce the total

duration of the required data set and algorithmic execution time were estimated by
a direct parametric search; Figures 4 and 5. Functions of the singular values of
equation (15) are subsequently used in cutting state identi"cation.

4. CTOM

The constrained third order mean (CTOM) [21], provides an alternative set of linear
algebraic equations for the determination of AR coe$cients, a

i
. De"ne

qL
m
(k, i),X (m!i)X2 (m!k), (20)

where i"1,2, P. It follows from equations (1), (2), and (7) that

EMqL
m
(k, i)N"cx

3
(i!k, i!k). (21)

Equation (13) may then be expressed in terms of qL
m
(k, i) as

EMCK (m, k)N"0 (22)

with

CK (m, k),qL
m
(k, 0)#

P
+
i/1

a(i)qL
m
(k, i). (23)

N!P samples of CK (m, k) may be found for m"P#1, P#2,2, N; k"1,2, P.
Equation (22) is satis"ed by equating the sample mean to zero:

1

N!P

N
+

m/P`1

CK (m, k)"0 (24)

for k"1,2, P. Expressing equation (24) in matrix form gives

Q a"b, (25)

where Q"[qL
ij
], i, j"1,2, P, a"[a(1),2, a (P)]T, b"[qL

i0
]T and

qL
ij
"

N
+

m/P`1

qL
m
(i, j). (26)

If the time series is divided into i records of equal length, then qL
ij

may be approximated by
the value of qL

m
(i, j) for the nth record, qL (n)

m
(i, j) averaged over i records. Then, equation (26)

becomes

qL
ij
"

1

i
i
+
n/1

M
+

m/P`1

qL (n)
m

(i, j). (27)
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CTOM is asymptotically equivalent to TOR for a given AR order [21] and gives consistent
AR parameter estimates for processes satisfying equation (12).

5. OARM

The optimized AR method [23] follows from equation (13) with k"0, 1,2, s and
l"0, 1,2, s. Equation (13) becomes

r a"b, (28)

where

r"

(0, 0) (!1,!1) 2 (!s,!s)

(0, 1) (!1, 0) 2 (!s,!s#1)

F F F

(0, s) (!1, s!1) 2 (!s, 0)

(1, 0) (0,!1) 2 (!s#1,!s)

F F F

(s, s) (s!1, s!1) 2 (0, 0)

, (29)

a"a[1, a(1),2, a (P)]T, b"[b, 0,2, 0]T, (i, j)"cx
3
(i, j) and r is (P#1)2](P#1) with

s"P. A least-squares solution of equation (29) is a"(rTr)~1rTb which implies that

r
2
a"rTb, (30)

where r
2
,rTr. TOR is a special case of OARM form with k"l. The elements of the

r matrix, cx
3
(i, j), may be estimated by averaging over i records of M samples each; equation

(19).

6. SINGULAR-VALUE DECOMPOSITION

Properties of singular values are discussed and applied to phase-coupled test functions,
chosen to model chatter, light and medium orthogonal cutting. If A is a real m]n matrix,
then there exists orthogonal matrices U3Rm]n and V3Rm]n such that

UTAV"diag(p
1
,2, p

q
)3Rm]n, (31)

where q"min(m, n), p
1
*p

2
*2p

q
*0 are the singular values and Rm]n denotes a real

m]n matrix. If p
1
*2*p

r
*p

r`1
"2"p

q
"0, then rank (A)"r; references [26, 27].

The following three quadratically phase-coupled trigonometric functions:

f
1
(t)"cos(2n 100t#h

1
)#cos(2n100t#h

2
)

(32)
#0)2 cos(2n 200t#h

1
#h

2
),

f
2
(t)"0)9 cos(2n 90t#h

1
)#1)0 cos(2n100t#h

2
)

(33)
#0)2 cos(2n 190t#h

1
#h

2
),
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f
3
(t)"cos(2n 90t#h

1
)#cos(2n100t#h

2
)

#cos(2n190t#h
1
#h

2
)#cos(2n100t#h

3
) (34)

#cos(2n110t#h
4
)#0)5 cos(2n210t#h

3
#h

4
)

were constructed to approximate the R, Q and r
2
-ratios associated with measured tool

accelerations for chatter, light and medium orthogonal cutting, respectively; reference [19].
The phases h

i
are mutually independent and uniformly distributed over [0, 2n].

7. STATE CHARACTERIZATION

The singular values of an m]n matrix may be ordered as p
1
*p

2
*p

3
*

p
4
*2*p

q
*0, equation (31). Denote the ratio (p

1
#p

2
)/(p

3
#p

4
) for a matrix A as the

A-ratio. The R, Q and r
2
-ratios associated with the R, Q and r

2
matrices, equations (15), (25),

(27) and (30), respectively, have been found for each of the test functions, f
i
, equations

(32)}(34) besides a set of measured tool accelerations associated with chatter. The R, Q
and r

2
-ratios are shown to discriminate between the test functions and to be consistent

for the chatter data. Although the magnitudes of the singular values of the R, Q and r
2

matrices vary widely, the corresponding R, Q and r
2
-ratios are for the most part nearly

identical.
Three data sets were constructed consisting of test functions f

i
(t), i"1, 2, 3 sampled at

1024 Hz and arranged in 15 records of 1024 values each. The singular values of the R, Q and
r
2

matrices and the R, Q and r
2
-ratios were found by averaging the appropriate function,

equations (19), (27), (30), over the15 records associated with each f
i
(t).

The function f
1
(t) is self-phase coupled at a frequency of 100 Hz. In the experimental data

studied, cutting states closer to chatter always exhibited power spectral components in the
neighborhood of 100 and 200 Hz and a single peak in the bispectrum in the neighborhood
of (100 Hz, 100 Hz), [19]. For f

1
(t), the means of the dominant pairs of singular values of

R are seen to be linear functions of maxlag in Figure 1(a). The corresponding R-ratio
converges to a value of 2 for maxlag'60, Figure 1(b). Similar behavior is exhibited by the
singular values of Q. Although the magnitudes of the singular values of Q di!er from those
of R by a factor of 103 the Q-ratio oscillates with a small amplitude about a value of 2,
Figure 2(a) and 2(b). For f

1
(t), the singular values of r

2
versus maxlag di!er from those of

R and Q, Figure 3(a). However, the Q-ratio converges to a value of 2 for maxlag'80,
Figure 3(b). It is evident that the number of pairs of singular values equals the number of
di!erent frequency components in f

1
(t).

Function f
2
(t), equation (33), exhibits phase coupling of 90 and 100 Hz components. The

coupling of side bands to the central 100 Hz frequency component has been observed in the
experimental data associated with light and medium cutting. The R-ratios for f

2
(t) and light

cutting data are similar [19]. Singular values of R and Q matrices and the R and Q-ratios as
functions of maxlag, Figures 1(c) and 2(c), 1(d) and 2(d) are identical. For maxlag"100 the
R and Q-ratios, equal 1 and are bounded between 1 and 1)2 for maxlag'100. The r

2
-ratio

is similar to the R and Q-ratios, reaching a minimum of 1)2 for maxlag"100 and is
bounded between 1)2 and 1)25 for maxlag'100, Figure 3(c) and 3(d). The number of pairs
of singular values, 3, is seen to equal the number of di!erent frequency components in f

2
(t).

Functions f
3
(t), equation (34), is the sum of a phase-coupled component at 100 and

110 Hz and a phase coupling of 90 and 100 Hz components. The R-ratios for f
3
(t)

and medium cutting data are similar [19]. Singular values of R and Q matrices and R and
Q-ratios, Figures 1(e) and 2(e), 1(f ) and 2(f ) are nearly identical. For the R and Q-ratios,



Figure 1. f
i
(t) with n samp"1024, f samp"1024 Hz, n record"15. For i"1: (a) singular values and (b)

R-ratio versus maxlag; for i"2: (c) singular values and (d) R-ratio versus maxlag; for i"3: (e) singular values and
(f ) R-ratio versus maxlag.
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respectively, at maxlag"100, minimums of 1)46 and 1)52 are attained and 1)46(R(1)62,
1)52(Q(1)63 for maxlag'100. The r

2
-ratio is similar to the R and Q-ratios reaching

a minimum of 1)28 at maxlag"100 and is bounded between 1)28 and 1)50 for
maxlag'100, Figure 3(e) and 3(f ). Five pairs of singular values are evident which
correspond to the "ve frequency components present in f

3
(t).



Figure 2. f
i
(t) with n samp"1024, f samp"1024 Hz, n record"15. For i"1: (a) singular values and (b)

Q-ratio versus maxlag; for i"2: (c) singular values and (d) Q-ratio versus maxlag; for i"3: (e) singular values and
(f ) Q-ratio versus maxlag.
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Rapid identi"cation of the current cutting state is essential for the on-line control of the
cutting process. To this end, parametric studies were carried out in which sampling rates,
record size and number were varied. Three data sets were formed consisting of f

i
(t),

i"1, 2, 3 sampled at 1024 Hz and arranged in three records of 256 samples each for a time
series 0)75 s in length. The singular values of the R, Q and r

2
matrices and the R, Q and



Figure 3. f
i
(t) with n samp"1024, f samp"1024 Hz, n record"15. For i"1: (a) singular values and (b)

r
2
-ratio versus maxlag; for i"2: (c) singular values and (d) r

2
-ratio versus maxlag; for i"3: (e) singular values and

(f ) r
2
-ratio versus maxlag.
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r
2
-ratios were computed by averaging the appropriate functions over the three records

associated with each f
i
(t). Figures 4 and 5 show the results of the computation. Comparison

of Figure 4(a) and 4(b) for f
1
(t) with Figure 1(a) and 1(b), singular values of R matrices and

the R-ratios for 15 records of 1024 samples each sampled at 1024 Hz, shows the "gures to
be identical. Figure 4(c) and 4(d), for f

2
(t), is nearly identical to Figure 1(c) and 1(d). The

minimum of the R-ratio for f
3
(t), Figure 4(f ), at maxlag"100 is 1)56, while for the more



Figure 4. f
i
(t) with n samp"256, f samp"1024 Hz, n record"3. For i"1: (a) singular values and (b) R-ratio

versus maxlag; for i"2: (c) singular values and (d) R-ratio versus maxlag; for i"3: (e) singular values and
(f ) R-ratio versus maxlag.
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accurate result shown in Figure 1(f ) the minimum is 1)46. Figure 5 displays the singular
values of Q matrices and the Q-ratios for f

i
, i"1, 2, 3 based on the reduced data set of three

records each of 256 samples. A comparison with Figure 3 shows the superposition of
oscillations on the more accurate result. However, the approximation is su$ciently
accurate to characterize the functions f

i
.



Figure 5. f
i
(t) with n samp"256, f samp"1024 Hz, n record"3. For i"1: (a) singular values and (b) Q-ratio

versus maxlag; for i"2: (c) singular values and (d) Q-ratio versus maxlag; for i"3: (e) singular values and (f )
Q-ratio versus maxlag.
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For k*3 the cumulants c
k
(q

1
, q

2
,2, q

k~1
), equations (2), and (7), are known to be

insensitive to added Gaussian noise for su$ciently large values of m in equation (2) [22, 24].
The magnitude of error, for a given f

i
(t), in the numerical computation of singular values of

the R, Q, and r
2
matrices occasioned by additive Gaussian noise is shown to be a function of

the magnitude of the noise variance and m. Gaussian noise with a variance"1 was added



Figure 6. f
i
(t)#Gaussian noise of variance"1 with n samp"1024, f samp"1024 Hz, n record"15. For

i"1: (a) singular values and (b) R-ratio versus maxlag; for i"2: (c) singular values and (d) R-ratio versus maxlag;
for i"3: (e) singular values and (f ) R-ratio versus maxlag.
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to the f
i
(t) functions. Three data sets were formed for f

i
(t), i"1, 2, 3 sampled at 1024 Hz and

arranged in 15 records of 1024 samples each. The corresponding singular values of the
R matrix, equation (15) and the R-ratios are shown in Figure 6. Figure 6(a) and 6(b) for f

1
(t)

plus noise is identical to Figure 1(a) and 1(b) for the noiseless case. The qualitative behavior
of the R-ratio for f

2
(t) plus noise, Figure 6(d), is similar to the noiseless case, Figure 1(d),



Figure 7. f
i
(t)#Gaussian noise of variance"1 with n samp"1024, f samp"1024 Hz, n record"15. For

i"1: (a) singular values and (b) Q-ratio versus maxlag; for i"2: (c) singular values and (d) Q-ratio versus maxlag;
for i"3: (e) singular values and (f ) Q-ratio versus maxlag.
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decreasing to a minimum of 1 for maxlag"100. Figure 6(e) and 6(f ) for f
3
(t) plus noise is

nearly identical to Figure 1(e) and 1(f ) for the noiseless case.
As in the case of the R-ratio, the Q-ratio, equation (25), associated with CTOM, gives

ratios for f
i
(t) plus noise, Figure 7, which are qualitatively similar to those found for the

noiseless case, Figure 2. Similar calculations of the R and Q-ratios based on the reduced
data set with added Gaussian noise of variance"0)50 displayed qualitative similarities



Figure 8. Set 1: (a) R singular values versus maxlag; (b) R-ratio versus maxlag; (c) Q singular values versus
maxlag; (d) Q-ratio versus maxlag; (e) r

2
singular values versus maxlag; (f ) r

2
-ratio versus maxlag.
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between the noiseless and noisy cases. For both the extended and reduced noisy data sets,
the R and Q-ratios identi"ed the test functions, f

i
(t).

The TOR, CTOM and OARM algorithms were applied to the analysis of experimentally
measured tool acceleration chatter data, set 1, for which depth of cut"2)8 mm, feed rate"
0)007 in/rev, surface speed"90 m/min, sampling rate"1024 Hz and duration"1)0 s. The
corresponding R, Q and r

2
-ratios, shown in Figure 8, are in good agreement for

maxlag'50. Previous studies of the measured tool acceleration chatter data [19] have
shown that an R-ratio*2 is associated with the chatter state.
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8. AR APPROXIMATION BY CUMULANTS OF ARBITRARY ORDER

The previous discussion has been limited to Toeplitz matrices of third order cumulants,
c
3
(q

1
, q

2
), associated with AR approximation. For systems with cubic or higher order

non-linearities, algorithms based on third order cumulants would fail. Two algorithms for
the determination of ARMA parameters [28}30] provide matrices of cumulants of
arbitrary order suitable for singular-value analysis. Consider the causal ARMA model

P
+
j/0

a ( j)y(i!j)"
q
+
j/0

b ( j)w(i!j), (35)

where y(i) is the output and the input w (i) is stationary, zero mean, i.i.d., non-Gaussian with
kth order cumulant cw

k
. Since w(i) is i.i.d. its kth order cumulant may be expressed as

cw
k
(i
1
, i

2
,2, i

k~1
)"cw

k
d (i

1
, i

2
,2, i

k~1
). (36)

where d (i
1
, i

2
,2, i

k~1
) denotes the Kronecker delta function. The kth order output

cumulants are then given by [28, 29]

cy
k
(i
1
, i

2
,2, i

k~1
)"cw

k

`=
+
i/0

h (i)h(i#i
1
)2h (i#i

k~1
), (37)

where h(m),ARMA response function. Let

cy
k
(m, n),cy

k
(m, n, 0,2, 0) (38)

for k*3. Substituting equation (38) into equation (37) gives

cy
k
(m, n)"cw

k

=
+
i/0

h (i)k~2h (i#m)h (i#n). (39)

It can be shown [28] that

h (i#m)"!

p
+
j/1

a ( j)h(i#m!j)#b (i#m). (40)

Combining equations (39) and (40) gives

cy
k
(m, n)#

p
+
j/1

a( j)cy
k
(m!j, n)"MQ,m)q ,

0,m;q,
(41)

where Q"cw
k

+=
i/0

h(i)k~2 b(i#m)h (i#n). Letting n"q!p ,2, q, m"q#1,2, q#p in
equation (41) gives p (p#1) equations for the coe$cients a (i), i"1,2, p [28]:

C a"b, (42)
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where

C"

(q#1!p, q!p) 2 (q, q!p)

F F F

(q#1!p, q) 2 (q, q)

F

(q, q!p) 2 (q#p!1, q!p)

F F F

(q, q) 2 (q#p!1, q)

, (43)

a"[a(p), a(p!1),2, a(1)]T and b"![(q#1, q!p),2, (q#1, q),2, (q#p, q!p),2,
(q#p, q)]T. cy

k
(m, n),(m, n). Taking the product of the p (p#1)]p matrix C with CT gives

C
sq

a"CTb, (44)

where C
sq
,CTC is p]p. Assumptions inherent in the deviation of equation (42) are given

in references [28, 30]. The singular values of C
sq

will be examined subsequently.
A second algorithm for ARMA parameter estimation [30] follows the derivation of

reference [28], equations (35)}(41). In reference [30], equation (41) is written in the form

P
+
j/0

a( j)cy
k
(m!j, n)"0 (45)

for m'q, where n"q!p ,2, q and m"q#1,2, q#p#M, M*0. Expressing
equation (45) as S a"0, S

sq
is de"ned as

S
sq
"STS. (46)

For a proper choice of p, q and M, the AR parameters, a ( j), are identi"ed by equation (45),
[30]. In practice, the true ARMA orders, p and q are not usually known. Assuming that
these parameters are overestimated by P*p and Q*q, letting n"!P ,2, Q and
m"Q#1,2, Q#P will include a su$cient amount of data in providing a robust
estimate of the singular values of the S matrix. The elements of the C and S matrices may be
estimated by averaging over i records of M samples each; equation (19).

9. CUBIC PHASE COUPLING

Relationships between cubically phase-coupled trigonometric functions and the singular
values of the C

sq
and S

sq
matrices were considered through a study of functions g

i
(t), i"1, 2:

g
1
(t)"0)25 cos(2n100t#h

1
)#0)25 cos(2n100t#h

2
)

#1)0 cos(2n130t#h
3
)#0)86 cos(2n330t#h

1
#h

2
#h

3
), (47)

g
2
(t)"1)0 cos(2n100t#h

1
)#1)0 cos(2n110t#h

2
)

#1)0 cos(2n160t#h
3
)#0)15 cos(2n370t#h

1
#h

2
#h

3
), (48)



Figure 9. g
i
(t) with n samp"512, f samp"512, n record"15. For i"1: (a) singular values and (b) C-ratio

versus maxlag; for i"2: (c) singular values and (d) C-ratio versus maxlag.
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where the phases h
i
are mutually independent and uniformly distributed over [0, 2n]. Two

data sets were constructed consisting of cubically phase-coupled test functions g
i
(t), i"1, 2;

equations (47) and (48), sampled at 512 Hz and arranged in 15 records of 512 values each.
The singular values of the C and S

sq
matrices equations (43) and (46), and the C and S

sq
ratios were found by averaging the appropriate function over the 15 records associated with
each g

i
(t).

g
1
(t) is the sum of two components at 100 Hz together with components at 130 and

330 Hz. Three pairs of singular values of the C matrix are evident in Figure 9(a). The C-ratio
is seen to approach a value of K3)2 in Figure 9(b) for maxlag"100. The singular values
and C-ratio verses maxlag for g

i
(t) are qualitatively similar to those for the quadratically

phase-coupled function f
1
(t); equation (32), Figure 3(a, b).

The modulated function g
2
(t), equation (48), is the sum of four components at 100, 110,

160 and 370 Hz. Four pairs of singular values of the C matrix appear in Figure 9(c). The
C-ratio approaches a value of 1)0 at intervals of 50 maxlags. Three of the largest pairs of
singular values have a common value of maxlag"50 which corresponds to approximately
10 Hz, the modulation frequency, with a sampling rate of 512 Hz. A similarity is
evident between Figures 9(c, d) and 3(c, d) for the quadratically coupled f

2
(t); equation (33).

An analysis of g
i
(t) based on the S

sq
matrix gave the results identical to those shown in

Figure 9.
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10. CONCLUSIONS

In references [21, 22], the algorithms CTOM and OARM were shown to resolve the
peaks in the bispectrum of a set of phase-coupled test functions more accurately than the
TOR algorithm. The present study demonstrates that for a set of phase-coupled test
functions modelling the orthogonal cutting of sti! metal cylinders [19] and an example of
experimentally measured cutting tool accelerations, ratios of singular values associated with
TOR, CTOM and OARM identify the test functions and cutting state. However, the
relative computational simplicity and speed of TOR together with its invariance in the
presence of high levels of Gaussian noise indicate greater e!ectiveness than CTOM and
OARM in the on-line control of cutting states.

The above algorithms detect quadratic or second order phase coupling but not third or
higher order coupling. In the present study, ratios of singular values associated with
matrices of fourth order cumulants were shown to identify test functions with cubic phase
coupling.
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